Sign Up

Your Profile will be reviewed by Admin
TODAY : Advance Search
Feb 2018


Hyatt Regency - Orlando 9801 International Drive Orlando , Florida 32819
Tel: (407) 284-1234
Google Map


Event Overview:

MAGNETICS 2018 is a leading global event focused on the latest economic developments and technical advancements in magnetics markets and technologies bringing together worldwide magnetics experts. This is a once-a-year opportunity for professionals involved in magnetics technologies to learn the latest advancements in magnetic applications, technology and materials as well as global issues of supply, demand and pricing of magnetic materials.

Magnetics 2018 is an opportunity to learn from technical experts and network with peers, professionals and potential business partners involved in a variety of applications. Learn about advancements in magnetic materials, as well as the latest technical innovations and application developments in the field of magnetics. Learn the outlook for pricing and economics. Discover the latest techniques, equipment and materials involved in the performance and control of magnetics. Learn from leading technical innovators the latest developments in how magnets are being applied, and magnetic effects utilized, to help optimize system and product performance in diverse applications.

The conference will be co-located with Motor & Drive Systems 2018, with a full registration pass granting access to both programs.

Attendee Information:

Who should attend

– End Users: Design engineers, system engineers and OEM developers of products that utilize magnets, magnet systems and magnetic materials. Engineers and technologists involved in EMI/EMC technology, shielding and magnetic effects.
– Suppliers of magnets and magnetic materials. Manufacturers and suppliers of magnetics test equipment and testing services. Manufacturers of magnetic assemblies and components. Suppliers of specialized equipment, materials and supplies used in magnetics manufacturing and assembly.
– Research engineers in academia and at insitutions

Management Executives
– purchasing
– design and products development
– sales and marketing

Industry Consultants and Finance Executives
– Bankers and private equity
– Venture Capital professionals
– Business and strategy consultants

Exhibitor Information:

This is an event unlike any other. Magnetics 2018 is an international technical conference with an interactive exhibit hall co-located with the Motor & Drive Systems Conference for the eighth year in a row. This two-day event with hands-on workshops and technical sessions focuses on the emerging Magnetics marketplace as well as advancements and technologies. This is the only direct forum of its kind and therefore is attended by world renowned scientists and buyers from all over the globe looking for custom solutions for current projects. Since these events are co-located this will expose your booth to additional qualified prospects in multiple markets.

Who Exhibits?

Companies that consult, design, or manufacture in these target categories:


Testing & Instrumentation

Soft Magnetic Material

Permanent Magnets

Power Electronics

EMI / EMC / Shielding

Magnetic Assembly & Mfg



Data Storage

Nano Magnetics


Sensors & Motion Control


Electro-Magnetic Software

Magnetic Components

Magnetic Equipment

Specialized Coatings & Adhesives


Superconducting Magnets


Magnet Recycling/Conservation

Research & Development


Magnetic Circuit Design



Electric Motors and Drives

Interface Systems and Equipment

Motion Control Components

Automation Components

Software for System Design and Control

Power Modules

Power Management Semiconductors

Test & Measurement Equipment and Services

Software for Motor Design

Co-located with Motor & Drive Systems 2018


Feb 8   

7:00 am

Registration Opens/Continental Breakfast


 8:10 am

Welcoming Address


 8:15 am

Keynote Panel: The Future of the Magnetics Industry – Pricing, Trends, Technology

How high will the price of Rare Earth materials climb? Is there sufficient magnet supply to fuel the demand from electric vehicles? Attend the Keynote panel at MAGNETICS 2018 as industry leaders will discuss the future of the magnetics industry.

Moderated by Scott Tubbs, Vice President of Sales & Marketing, Quadrant Magnetics

James Bell, Principal Consultant, MagnetoDynamics

Stan Trout, President, Spontaneous Materials

Walter Benecki, President, Walter T. Benecki LLC

Scott Struven, Sr. Mgr. Sales and Engineering, Hitachi Metals America, Ltd. 

S.Tubbs, J. Bell, S.Trout, W. Benecki, S. Struven 


 9:45 am

International Rare Earth Standards

The International Organization for Standardization (ISO) recently established a Technical Committee tasked with writing standards within the field of rare earth elements. The scope of the Technical Committee covers basic definitions, industry terminology, testing, analysis, rare earth products, element recycling, environmental stewardship, and material traceability. Standards spanning the global rare earth supply chain will be of critical importance to large consumers like the US. To ensure that US market needs and perspectives are adequately represented, an advisory group of US-based rare earth stakeholders, from a variety of sectors, have engaged in the process of helping write these new standards. The presentation will expand on this effort, as well as the opportunities that exist for additional stakeholder engagement.

Brian Zupancic, Senior Project Manager, CSA Group  

 10:15 am

Networking Break



 10:45 am

Permanent Magnet Specifications: What About all Those Non-Magnetic Properties?

Standard practice for specifying permanent magnets involves naming the magnet family and relevant magnetic properties such as Remanence, Intrinsic Coercivity and Energy Product. Sometimes the weight or density of a part is identified but not as a controlled parameter. Every permanent magnet supplier and distributor lists the relevant magnet parameters on their website with the non-magnetic parameters off to the side, or banished to another page. Normally these specifications are considered uncontrolled or reference values. Occasionally a designer references these parameters on a drawing, implying they should be controlled. This can lead to back & forth discussions about what can and cannot be provided. The MMPA, ASTM and IEC standards all leave decisions on these issues to the customer and supplier. This presentation will discuss the non-magnetic properties such as Tensile or Yield Strength, Hardness and others. The origin of some of the values will be discussed, the limitations on the measurements and why they shouldn’t be used as controlling parameters on drawings or specifications.

Michael Devine, Senior Applications Engineer, Adams Magnetic Products  


 11:20 am

Nanostructured Rare Earth Ferrites Fabricated by Solution Combustion Synthesis

The rare earth ferrites exhibit a high electrical resistivity as well as an excessive value of magnetic permeability and low power losses that describes a growing interest for electronic applications at higher frequencies. Extensive studies specified the projections of such materials for constructing magnetic field sensors, microwave, recording and reading devices.  In this report, the development of nanostructured particles of rare earth ferrites by Solution Combustion Synthesis (SCS) is described. The method uses exothermic reaction to produce a thermal front that moves through the sample converting components to the desired rare earth ferrite nanoparticles. The yttrium, lanthanum, cerium, samarium and iron nitrates were used as metal precursors and glycine as a fuel. The glycine is completely combusted during the thermal decomposition of the nitrates and generates a temperature front that propagates through the sample. Thermodynamic analysis of the systems predicted a maximum adiabatic temperature in the range of 2200-2800 K with generation of carbon dioxide, nitrogen and water vapor. The substantial gas generation during the reaction helps to produce the synthesized powders friable and loosely agglomerated. Increasing the glycine content increased the reaction temperature during the SCS and consequently the particle size.

Dr. Karen Martirosyan, Professor in Physics, University of Texas Rio Grande Valley 


 11:55 am

Injection Molded Magnets: Methods to Improve Their Accuracy for Positional Sensor Applications

The positional accuracy of magnetic sensor systems with injection molded magnets depends on different parameters. Those are the appropriate choice of the magnet for a given type of sensor, the magnets geometry together with its inherent distribution of polarization, an adequate design of magnetizing facilities as well as the management of the injection molding process. In this presentation the different sorts of injection molded magnets for the most common magnetic position sensors will be explained as well as the basic physical principles of their interaction. By different examples there will be shown how to improve external field components of the magnets, so that lower positional errors result at the sensor output. Those improvements can be reached often by relatively simple shape enhancements. In other cases a meticulous design of the magnetizing facilities is needed to provide sensor signals with low deviations from an ideal behavior. Beside experimental results, related design methods on FEM basis will be explained for the magnetization process of the magnet as well as for the analysis of the magnet-sensor interaction itself. Finally the impact of process parameters of injection molding will be presented, by general experimental studies as well as with data from series products.

Thomas Schliesch, Head of R&D, Baermann GmbH 

 12:30 pm

Networking Lunch



 1:45 pm

Rare Earth Permanent Magnets for Rotary Machines

Rare earth permanent magnets, such as neodymium iron boron and samarium cobalt, are commonly used in permanent magnet motors and generators. The magnetic circuit design, magnet grade selections, magnetic specifications, magnetic testing, magnet brittleness and handling, assembly techniques, in situ magnetization of rotors, containment band, rotor testing, and some possible failure mode of magnet rotors will be the focus of this talk. We will also discuss some of the misconceptions about magnet assemblies for rotary machines.

Jinfang Liu, President & COO, Electron Energy Corp.  


 2:20 pm

Site Specific Magnetic Anisotropy in Rare Earth and Transition Metal Based Permanent Magnetic Materials

The very first criteria for the permanent magnetic material design is crystal structure which allows magnetic moments to align along the anisotropic crystal axis. Hexagonal and tetragonal structures do fall within this category. The involved crystal sites play a key role in determining the magnetic moments and uniaxial magnetic anisotropy. Here we present how advanced density functional calculations incorporating electron correlation and spin orbit coupling are capable to predict and optimize magnetic anisotropy contributed by the rare-earth sites due to the crystal-field split and spin-orbit coupled 4f-states followed by the small but non-negligible magnetic anisotropy contributed by 3d-states. We focus on the site substituted SmCo5 and it’s derivatives to show how theory helps to design and tailor intrinsic properties of permanent magnetic materials.

Durga Paudyal, Ph.D., Associate Scientist, Ames Laboratory  

 2:55 pm

Networking Break



Buyer’s Forum

We are excited to announce a new addition to the MAGNETICS 2018 conference – The Buyer's Forum. Magnetic System buyers,  integrators, end-users will have a unique platform to present their experiences, case studies, complications and lessons learned. This is an opportunity to discuss with colleagues, OEMs  and suppliers their technology needs and expectations. Contact Shannon Given for details on participation.




Additive Printing of Permanent Magnets

This presentation is focused on the additive manufacturing techniques to print magnets with complex size and shape. Big Area Additively Manufactured (BAAM) NdFeB bonded magnets with performance comparable to, or better than, magnets of the same composition made using traditional injection molding. The density of the printed magnet is 5.2 g/cm3. The room temperature magnetic properties are: intrinsic coercivity Hci= 8.9 kOe (708.2 kA/m), remanence Br = 5.8 kG (0.58 Tesla), and energy product (BH)max= 7.3 MGOe (58.1 kJ/m3). Additive manufacturing can now be applied for a wide range of magnetic materials and assemblies. We will review all the additive printing techniques that are suitable for fabricating bonded magnets. This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

Dr. M. Parans Paranthaman, Corporate Fellow and Group Leader, Oak Ridge National Laboratory  


 4:40 pm

Magnetic Materials Fabricated by Cold Spray Additive Manufacturing

This presentation discusses the cost effective fabrication of soft and hard magnetic materials using cold spray additive manufacturing. This technique allows for 3D build-up of complex shapes permitting fabrication of high complexity motor designs for enhanced performance. Combination of sprayed soft and hard magnetic materials opens up synergetic design possibilities for additional performance gain and cost savings. Measured hard magnetic properties (coercivity and remanence), soft magnetic properties (permeability and losses) and mechanical properties (adhesion and cohesion) will be presented. Use of the materials for the realization of motor prototypes will be discussed.

Jean-Michel Lamarre, Research Officers, National Research Council of Canada 

 5:15 pm

Cocktail Reception

Feb 9   

7:30 am

Registration Opens/Breakfast in Exhibit Hall


 8:15 am

Keynote Presentation – The Business of Commercializing Innovations in Magnet Science

The commercialization of science in general poses unique challenges compared to ventures not reliant on technical break-thoughs and innovations. Specifically in magnet science commercialization there exists a critical gap between innovations that further knowledge and those that present compelling cases for business ventures. There is historical precedence for both successes and failures in the arena of commercialized magnet science, evidenced by the existence of large magnet science corporations like Bruker & Oxford Instruments as well as the multitude of failed ventures who’s magnet science invention simply could not support a business. The MagLab is plowing new ground in efforts to establish new best practices, support infrastructure and enhance startup culture & ecosystem building for entrepreneurs and innovators working in the startup & business arenas of magnet science. Building upon the MagLab’s history of breaking maximum magnetic field records and pushing the limits of magnet science creates a new and unique opportunity for innovators and entrepreneurs to brainstorm, test, implement and launch ventures that would not be possible without the support of the MagLab.

Jeffery Whalen, Researcher, National High Magnetic Field Laboratory 


 9:05 am

New Permanent Magnet Materials from the Critical Materials Institute

Strong permanent magnets are an important component of many energy technologies, such as electric and hybrid electric vehicles. Despite this, finding permanent magnets to surpass or supplement the Nd2Fe14B magnet discovered in 1984 remains a challenge. This presentation will discuss several recent discoveries by the US DOE-funded Critical Materials Institute including: the rare-earth-free potential Alnico-beating “gap magnets” Fe5PB2 and Fe5SiB2;  the potential high-performance magnet LaCeCo16Ti; and a less costly high performance magnet alloys based on the Nd2Fe14B material. The presentation will close with a description of future research directions and an outlook for the future of permanent magnets.

Dr. David Parker, Staff Scientist, Oak Ridge National Laboratory  


 9:40 am

Permanent Magnets Material Options: Why $/kg and (BH)max are Misleading Metrics

It has become accepted practice in the permanent magnet industry that $/kg and (BH)max are the primary metrics determining the optimum material choice for an application. However, there are many situations were both metrics are misleading and may lead to a less than optimal material selection. These shortcomings will be illustrated using case studies and alternative metrics will be discussed An update on the permanent magnet market and application drivers together with the history and latest status of the Hitachi Metals patent litigation will also be presented.

Dr. John Ormerod, Senior Technology Advisor, Magnet Applications, Inc.  

 10:15 am

Networking Break



 10:45 am

Cooling Technology Based on Magnetic Materials: What Does the Future Hold?

Caloric (solid) materials are referred to as those whose temperatures alter in responses to applied external fields. Representative examples include magnetocaloric, electrocaloric, and mechanocaloric (elastocaloric or barocaloric) materials. Refrigeration using these materials may yield significant advantages over conventional gas compression techniques. Current research is focused on the development of materials with desirable caloric properties for energy-efficient refrigeration. In this talk, I will first review recent progress in the development of caloric materials for advanced cooling technologies. I will then discuss specifically about the fundamental aspects and prospective applications of magnetocaloric materials, which have been extensively investigated over the past decade for energy-efficient magnetic refrigeration. The advantages and shortcomings of existing magnetocaloric materials will be assessed. Impacts of magnetic phase transitions, reduced dimensionality, and material processing on the magnetocaloric functionality of the material will be discussed. Some novel approaches for improving the materials’ cooling efficiency will be presented. Finally, a new class of multicaloric materials will be proposed.

Manh-Huong Phan, Associate Professor, Department of Physics, University of South Florida  

 11:20 am

High Energy Ferrites Compete with Bonded Neo Magnets

Ferrites have long been in usage but with the advent of rare earth magnets some of the applications that use ferrite were converted to Neo magnets. Neo magnets gives the same performance to ferrite but with a weight reduction of 90+ percent. The recent desire to lessen the dependence on China, which control the raw materials for rare earth magnets alternate approaches are being taken. Unlike rare earth magnets, ferrite magnets coercivity increases with increase in temperature, hence can be used in motor applications that operate at 150°C. Neo magnets depend on expensive dysprosium to operate at 150°C. Maximum induction of Ferrites that was limited to 4 kiloGauss has been improved to 4.6 kiloGauss. Energy product of 5.5 MGOe is achieved in improved ferrite magnets. With the advent of hybrid and electric vehicles permanent magnet traction motors are getting lot of attention. According to some researchers NdFeB magnets costs about $2.78/kW compared to Ferrite, which costs $1.93/kW for the same peak 80 kW power output. DOE researchers find that Neomagnets are a big cost component in all electric vehicles, and difficult to meet the target specific cost by 2020. Hence, there is a growing need to find alternates to expensive Neo magnets. This presentation details the development of higher energy ferrites, reviews the current state of rare earth magnets and offers a solution to the rare earth crisis.

Kalathur (Sim) Narasimhan, P2PTechnologies 

 11:55 am

Networking Lunch



 1:15 pm

A Comparison of Permanent Magnet Axial Flux Motors to Permanent Magnet Radial Flux Motors in Commercial Drone Applications

Commercial applications for battery powered autonomous vehicles used in air, land and sea environments will grow exponentially in the next few years. The drone application is the most popular of these applications in the present time. Currently most of the present applications use a special low weight design of the radial flux permanent magnet outer rotation motor. These applications need the low weight to allow a higher payload and a very low resistance to allow longer flight times. The Axial Flux motor can also be made in this type of design of a motor with a short height and a large OD and ID to minimize weight and resistance. This case study will compare the low weight Axial Flux design with both the inner rotation and outer rotation radial flux motor. The motor case study will be for a 3.5-inch diameter and 1.25 inch length motor. The input and output conditions will be the same and the weight and resistance of the three magnetic circuits will be compared. This case study will also compare the cost and reliability of the three motor types.

Lowell Christensen, Consultant Permanent Magnet Motor Design, Lowell Christensen LLC  


 1:55 pm

Evaluating Magnetic Materials on Brushless PM Motor Performance

One of the major potential challenges for simulating motor designs is the impact of stator lamination materials on motor performance.  There are a number of variables in selecting magnetic materials for use in a brushless PM motor design.  A first quadrant magnetizing curve and a core loss curve are needed from the steel foundry.  The second curve involves core loss versus iron member weight at different excitation frequencies.  Both curves must be loaded individually into the SPEED based material files.  Stator and Rotor lamination thicknesses, unit flux density, and specific magnetic material also impacts motor saturation and core losses just beyond the knee of the 1st quadrant B/H curve.  A new Motor-CAD BPM-EMag module simulation program will be used to illustrate the performance impact of these various materials on overall motor performance.

Dan Jones, President, Incremotion Associates  

 2:30 pm

Conclusion of Conference

Photos +




MORE events +